A Velocity–Dissipation Lagrangian Stochastic Model for Turbulent Dispersion in Atmospheric Boundary-Layer and Canopy Flows
نویسندگان
چکیده
An extended Lagrangian stochastic dispersion model that includes time variations of the turbulent kinetic energy dissipation rate is proposed. The instantaneous dissipation rate is described by a log-normal distribution to account for rare and intense bursts of dissipation occurring over short durations. This behaviour of the instantaneous dissipation rate is consistent with field measurements inside a pine forest and with published dissipation rate measurements in the atmospheric surface layer. The extended model is also shown to satisfy the well-mixed condition even for the highly inhomogeneous case of canopy flow. Application of this model to atmospheric boundary-layer and canopy flows reveals two types of motion that cannot be predicted by conventional dispersion models: a strong sweeping motion of particles towards the ground, and strong intermittent ejections of particles from the surface or canopy layer, which allows these particles to escape low-velocity regions to a high-velocity zone in the free air above. This ejective phenomenon increases the probability of marked fluid particles to reach far regions, creating a heavy tail in the mean concentration far from the scalar source.
منابع مشابه
Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملStochastic trajectory modelling of atmospheric dispersion
The stochastic trajectory-based (Lagrangian) approach has gained increasing importance and sophistication in atmospheric transport and dispersion modelling over the last few decades. State-of-the-art Lagrangian particle dispersion model (LPDMs) are used to compute trajectories of a large number of ‘marked’ particles and numerically simulate the dispersion of a pollutant (passive tracer) in the ...
متن کاملEffects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملA Lagrangian Stochastic Model for Heavy Particle Dispersion in the Atmospheric Marine Boundary Layer
The dispersion of heavy particles and pollutants is often simulated with Lagrangian stochastic (LS) models. Although these models have been employed successfully over land, the free surface at the air-sea interface complicates the implementation of traditional LS models. We present an adaptation of traditional LS models to the atmospheric marine boundary layer (MBL), where the bottom boundary i...
متن کاملApplication of the velocity-dissipation probability density function model to inhomogeneous turbulent flows
Recently Pope and Chen [ Phys. Fluids A 2, 1437 ( 1990) ] developed a turbulence model based on the one-point Eulerian joint probability density function (pdf) of velocity and dissipation. The modeling is performed by constructing stochastic processes for the velocity and dissipation following fluid particles. In the original work, these models were constructed by reference to the known statist...
متن کامل